NumPy
NumPy is the fundamental library for scientific computing with Python. NumPy is centered around a powerful N-dimensional array object, and it also contains useful linear algebra, Fourier transform, and random number functions.
Creating Arrays
Now let's import numpy
. Most people import it as np
:
import numpy as np
np.zeros
The zeros
function creates an array containing any number of zeros:
np.zeros(5)
Output
array([0., 0., 0., 0., 0.])
It's just as easy to create a 2D array (ie. a matrix) by providing a tuple with the desired number of rows and columns. For example, here's a 3x4 matrix:
np.zeros((3,4))
Output
array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])
Some vocabulary
-
In NumPy, each dimension is called an axis.
-
The number of axes is called the rank.
-
For example, the above 3x4 matrix is an array of rank 2 (it is 2-dimensional).
-
The first axis has length 3, the second has length 4.
-
-
An array's list of axis lengths is called the shape of the array.
-
For example, the above matrix's shape is
(3, 4)
. -
The rank is equal to the shape's length.
-
-
The size of an array is the total number of elements, which is the product of all axis lengths (eg. 3*4=12)
a = np.zeros((3,4))
a
Output
array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])
a.shape
Output
(3, 4)
a.ndim # equal to len(a.shape)
Output
2
a.size
Output
12
N-dimensional arrays
You can also create an N-dimensional array of arbitrary rank. For example, here's a 3D array (rank=3), with shape (2,3,4)
:
np.zeros((2,3,4))
Output
array([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
Array type
NumPy arrays have the type ndarrays
:
type(np.zeros((3,4)))
Output
numpy.ndarray
np.ones
Many other NumPy functions create ndarrays.
Here's a 3x4 matrix full of ones:
np.ones((3,4))
Output
array([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]])
np.full
Creates an array of the given shape initialized with the given value. Here's a 3x4 matrix full of π
.
np.full((3,4), np.pi)
Output
array([[3.14159265, 3.14159265, 3.14159265, 3.14159265], [3.14159265, 3.14159265, 3.14159265, 3.14159265], [3.14159265, 3.14159265, 3.14159265, 3.14159265]])
np.empty
An uninitialized 2x3 array (its content is not predictable, as it is whatever is in memory at that point):
np.empty((2,3))
Output
array([[0., 0., 0.], [0., 0., 0.]])
np.array
Of course you can initialize an ndarray
using a regular python array. Just call the array
function:
np.array([[1,2,3,4], [10, 20, 30, 40]])
Output
array([[ 1, 2, 3, 4], [10, 20, 30, 40]])
np.arange
You can create an ndarray
using NumPy's arange
function, which is similar to python's built-in range
function:
np.arange(1, 5)
Output
array([1, 2, 3, 4])
It also works with floats:
np.arange(1.0, 5.0)
Output
array([1., 2., 3., 4.])
Of course you can provide a step parameter:
np.arange(1, 5, 0.5)
Output
array([1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5])
However, when dealing with floats, the exact number of elements in the array is not always predictible. For example, consider this:
print(np.arange(0, 5/3, 1/3)) # depending on floating point errors, the max value is 4/3 or 5/3.
print(np.arange(0, 5/3, 0.333333333))
print(np.arange(0, 5/3, 0.333333334))
Output
[0. 0.33333333 0.66666667 1. 1.33333333 1.66666667] [0. 0.33333333 0.66666667 1. 1.33333333 1.66666667] [0. 0.33333333 0.66666667 1. 1.33333334]
np.linspace
For this reason, it is generally preferable to use the linspace
function instead of arange
when working with floats. The linspace
function returns an array containing a specific number of points evenly distributed between two values (note that the maximum value is included, contrary to arange
):
print(np.linspace(0, 5/3, 6))
Output
[0. 0.33333333 0.66666667 1. 1.33333333 1.66666667]
np.rand and np.randn
A number of functions are available in NumPy's random
module to create ndarray
s initialized with random values. For example, here is a 3x4 matrix initialized with random floats between 0 and 1 (uniform distribution):
np.random.rand(3,4)
Output
array([[0.07951522, 0.82516403, 0.54524215, 0.46662691], [0.12016334, 0.74912183, 0.183234 , 0.105027 ], [0.22051959, 0.26931151, 0.02739192, 0.4721405 ]])
Here's a 3x4 matrix containing random floats sampled from a univariate normal distribution (Gaussian distribution) of mean 0 and variance 1:
np.random.randn(3,4)
Output
array([[ 0.09545957, 0.14828368, -0.91504156, -0.36224068], [ 0.55434999, 0.41143633, 0.84385243, -0.3652369 ], [ 1.48071803, -1.45297797, 1.24551713, 0.4508626 ]])
To give you a feel of what these distributions look like, let's use matplotlib (see the matplotlib tutorial for more details):
%matplotlib inline
import matplotlib.pyplot as plt
plt.hist(np.random.rand(100000), density=True, bins=100, histtype="step", color="blue", label="rand")
plt.hist(np.random.randn(100000), density=True, bins=100, histtype="step", color="red", label="randn")
plt.axis([-2.5, 2.5, 0, 1.1])
plt.legend(loc = "upper left")
plt.title("Random distributions")
plt.xlabel("Value")
plt.ylabel("Density")
plt.show()
Output
np.fromfunction
You can also initialize an ndarray
using a function:
def my_function(z, y, x):
return x + 10 * y + 100 * z
np.fromfunction(my_function, (3, 2, 10))
Output
array([[[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.]],
[[100., 101., 102., 103., 104., 105., 106., 107., 108., 109.],
[110., 111., 112., 113., 114., 115., 116., 117., 118., 119.]],
[[200., 201., 202., 203., 204., 205., 206., 207., 208., 209.],
[210., 211., 212., 213., 214., 215., 216., 217., 218., 219.]]])
NumPy first creates three ndarrays
(one per dimension), each of shape (3, 2, 10)
. Each array has values equal to the coordinate along a specific axis. For example, all elements in the z
array are equal to their z-coordinate:
[[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
[[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
[[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]]
So the terms x
, y
and z
in the expression x + 10 * y + 100 * z
above are in fact ndarrays
(we will discuss arithmetic operations on arrays below). The point is that the function my_function
is only called once, instead of once per element. This makes initialization very efficient.
Array data
dtype
NumPy's ndarrays
are also efficient in part because all their elements must have the same type (usually numbers). You can check what the data type is by looking at the dtype
attribute:
c = np.arange(1, 5)
print(c.dtype, c)
Output
int64 [1 2 3 4]
c = np.arange(1.0, 5.0)
print(c.dtype, c)
Output
float64 [ 1. 2. 3. 4.]
Instead of letting NumPy guess what data type to use, you can set it explicitly when creating an array by setting the dtype
parameter:
Output
complex64 [ 1.+0.j 2.+0.j 3.+0.j 4.+0.j]
Available data types include int8
, int16
, int32
, int64
, uint8
|16
|32
|64
, float16
|32
|64
and complex64
|128
. Check out the documentation for the full list.
itemsize
The itemsize
attribute returns the size (in bytes) of each item:
e = np.arange(1, 5, dtype=np.complex64)
e.itemsize
Output
8
data buffer
An array's data is actually stored in memory as a flat (one dimensional) byte buffer. It is available via the data
attribute (you will rarely need it, though).
f = np.array([[1,2],[1000, 2000]], dtype=np.int32)
f.data
Output
In python 2, f.data
is a buffer. In python 3, it is a memoryview.
if (hasattr(f.data, "tobytes")):
data_bytes = f.data.tobytes() # python 3
else:
data_bytes = memoryview(f.data).tobytes() # python 2
data_bytes
Output
'\x01\x00\x00\x00\x02\x00\x00\x00\xe8\x03\x00\x00\xd0\x07\x00\x00'
Several ndarrays
can share the same data buffer, meaning that modifying one will also modify the others. We will see an example in a minute.
Reshaping an array
In place
Changing the shape of an ndarray
is as simple as setting its shape
attribute. However, the array's size must remain the same.
g = np.arange(24)
print(g)
print("Rank:", g.ndim)
Output
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] Rank: 1
g.shape = (6, 4)
print(g)
print("Rank:", g.ndim)
Output
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] [16 17 18 19] [20 21 22 23]] Rank: 2
g.shape = (2, 3, 4)
print(g)
print("Rank:", g.ndim)
Output
[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
[[12 13 14 15] [16 17 18 19] [20 21 22 23]]] Rank: 3
reshape
The reshape
function returns a new ndarray
object pointing at the same data. This means that modifying one array will also modify the other.
g2 = g.reshape(4,6)
print(g2)
print("Rank:", g2.ndim)
Output
[[ 0 1 2 3 4 5] [ 6 7 8 9 10 11] [12 13 14 15 16 17] [18 19 20 21 22 23]] Rank: 2
Set item at row 1, col 2 to 999 (more about indexing below).
g2[1, 2] = 999
g2
Output
array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 999, 9, 10, 11], [ 12, 13, 14, 15, 16, 17], [ 18, 19, 20, 21, 22, 23]])
The corresponding element in g
has been modified.
Output
array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [999, 9, 10, 11]],
[[ 12, 13, 14, 15],
[ 16, 17, 18, 19],
[ 20, 21, 22, 23]]])
ravel
Finally, the ravel
function returns a new one-dimensional ndarray
that also points to the same data:
g.ravel()
Output
array([ 0, 1, 2, 3, 4, 5, 6, 7, 999, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
Arithmetic operations
All the usual arithmetic operators (+
, -
, *
, /
, //
, **
, etc.) can be used with ndarray
s. They apply elementwise:
a = np.array([14, 23, 32, 41])
b = np.array([5, 4, 3, 2])
print("a + b =", a + b)
print("a - b =", a - b)
print("a * b =", a * b)
print("a / b =", a / b)
print("a // b =", a // b)
print("a % b =", a % b)
print("a ** b =", a ** b)
Output
a + b = [19 27 35 43] a - b = [ 9 19 29 39] a * b = [70 92 96 82] a / b = [ 2.8 5.75 10.66666667 20.5 ] a // b = [ 2 5 10 20] a % b = [4 3 2 1] a ** b = [537824 279841 32768 1681]
Note that the multiplication is not a matrix multiplication. We will discuss matrix operations below.
The arrays must have the same shape. If they do not, NumPy will apply the broadcasting rules.
Broadcasting
In general, when NumPy expects arrays of the same shape but finds that this is not the case, it applies the so-called broadcasting rules:
First rule
If the arrays do not have the same rank, then a 1 will be prepended to the smaller ranking arrays until their ranks match.
h = np.arange(5).reshape(1, 1, 5)
h
Output
array([[[0, 1, 2, 3, 4]]])
Now let's try to add a 1D array of shape (5,)
to this 3D array of shape (1,1,5)
. Applying the first rule of broadcasting!
h + [10, 20, 30, 40, 50] # same as: h + [[[10, 20, 30, 40, 50]]]
Output
array([[[10, 21, 32, 43, 54]]])
Second rule
Arrays with a 1 along a particular dimension act as if they had the size of the array with the largest shape along that dimension. The value of the array element is repeated along that dimension.
k = np.arange(6).reshape(2, 3)
k
Output
array([[0, 1, 2], [3, 4, 5]])
Let's try to add a 2D array of shape (2,1)
to this 2D ndarray
of shape (2, 3)
. NumPy will apply the second rule of broadcasting:
k + [[100], [200]] # same as: k + [[100, 100, 100], [200, 200, 200]]
Output
array([[100, 101, 102], [203, 204, 205]])
Combining rules 1 & 2, we can do this:
k + [100, 200, 300] # after rule 1: [[100, 200, 300]], and after rule 2: [[100, 200, 300], [100, 200, 300]]
Output
array([[100, 201, 302], [103, 204, 305]])
And also, very simply:
k + 1000 # same as: k + [[1000, 1000, 1000], [1000, 1000, 1000]]
Output
array([[1000, 1001, 1002], [1003, 1004, 1005]])
Third rule
After rules 1 & 2, the sizes of all arrays must match.
try:
k + [33, 44]
except ValueError as e:
print(e)
Output
operands could not be broadcast together with shapes (2,3) (2,)
Broadcasting rules are used in many NumPy operations, not just arithmetic operations, as we will see below. For more details about broadcasting, check out the documentation.
Upcasting
When trying to combine arrays with different dtype
s, NumPy will upcast to a type capable of handling all possible values (regardless of what the actual values are).
k1 = np.arange(0, 5, dtype=np.uint8)
print(k1.dtype, k1)
Output
uint8 [0 1 2 3 4]
k2 = k1 + np.array([5, 6, 7, 8, 9], dtype=np.int8)
print(k2.dtype, k2)
Output
int16 [ 5 7 9 11 13]
Note that int16
is required to represent all possible int8
and uint8
values (from -128 to 255), even though in this case a uint8 would have sufficed.
k3 = k1 + 1.5
print(k3.dtype, k3)
Output
float64 [ 1.5 2.5 3.5 4.5 5.5]
Conditional operators
The conditional operators also apply elementwise:
m = np.array([20, -5, 30, 40])
m < [15, 16, 35, 36]
Output
array([False, True, True, False], dtype=bool)
And using broadcasting:
m < 25 # equivalent to m < [25, 25, 25, 25]
Output
array([ True, True, False, False], dtype=bool)
This is most useful in conjunction with boolean indexing (discussed below).
m[m < 25]
Output
array([20, -5])
Mathematical and statistical functions
Many mathematical and statistical functions are available for ndarray
s.
ndarray methods
Some functions are simply ndarray
methods, for example:
a = np.array([[-2.5, 3.1, 7], [10, 11, 12]])
print(a)
print("mean =", a.mean())
Output
[[ -2.5 3.1 7. ] [ 10. 11. 12. ]] mean = 6.76666666667
Note that this computes the mean of all elements in the ndarray
, regardless of its shape.
Here are a few more useful ndarray
methods:
for func in (a.min, a.max, a.sum, a.prod, a.std, a.var):
print(func.__name__, "=", func())
Output
min = -2.5 max = 12.0 sum = 40.6 prod = -71610.0 std = 5.08483584352 var = 25.8555555556
These functions accept an optional argument axis
which lets you ask for the operation to be performed on elements along the given axis. For example:
c=np.arange(24).reshape(2,3,4)
c
Output
array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
c.sum(axis=0) # sum across matrices
Output
array([[12, 14, 16, 18], [20, 22, 24, 26], [28, 30, 32, 34]])
c.sum(axis=1) # sum across rows
Output
array([[12, 15, 18, 21], [48, 51, 54, 57]])
You can also sum over multiple axes:
c.sum(axis=(0,2)) # sum across matrices and columns
Output
array([ 60, 92, 124])
0+1+2+3 + 12+13+14+15, 4+5+6+7 + 16+17+18+19, 8+9+10+11 + 20+21+22+23
Output
(60, 92, 124)
Universal functions
NumPy also provides fast elementwise functions called universal functions, or ufunc. They are vectorized wrappers of simple functions. For example square
returns a new ndarray
which is a copy of the original ndarray
except that each element is squared:
a = np.array([[-2.5, 3.1, 7], [10, 11, 12]])
np.square(a)
Output
array([[ 6.25, 9.61, 49. ], [ 100. , 121. , 144. ]])
Here are a few more useful unary ufuncs:
print("Original ndarray")
print(a)
for func in (np.abs, np.sqrt, np.exp, np.log, np.sign, np.ceil, np.modf, np.isnan, np.cos):
print("\n", func.__name__)
print(func(a))
Output
Original ndarray [[ -2.5 3.1 7. ] [ 10. 11. 12. ]]
absolute [[ 2.5 3.1 7. ] [ 10. 11. 12. ]]
sqrt [[ nan 1.76068169 2.64575131] [ 3.16227766 3.31662479 3.46410162]]
exp [[ 8.20849986e-02 2.21979513e+01 1.09663316e+03] [ 2.20264658e+04 5.98741417e+04 1.62754791e+05]]
log [[ nan 1.13140211 1.94591015] [ 2.30258509 2.39789527 2.48490665]]
sign [[-1. 1. 1.] [ 1. 1. 1.]]
ceil [[ -2. 4. 7.] [ 10. 11. 12.]]
modf (array([[-0.5, 0.1, 0. ], [ 0. , 0. , 0. ]]), array([[ -2., 3., 7.], [ 10., 11., 12.]]))
isnan [[False False False] [False False False]]
cos [[-0.80114362 -0.99913515 0.75390225] [-0.83907153 0.0044257 0.84385396]] -c:5: RuntimeWarning: invalid value encountered in sqrt -c:5: RuntimeWarning: invalid value encountered in log
Binary ufuncs
There are also many binary ufuncs, that apply elementwise on two ndarray
s. Broadcasting rules are applied if the arrays do not have the same shape:
a = np.array([1, -2, 3, 4])
b = np.array([2, 8, -1, 7])
np.add(a, b) # equivalent to a + b
Output
array([ 3, 6, 2, 11])
np.greater(a, b) # equivalent to a > b
Output
array([False, False, True, False], dtype=bool)
np.maximum(a, b)
Output
array([2, 8, 3, 7])
np.copysign(a, b)
Output
array([ 1., 2., -3., 4.])
Array indexing
One-dimensional arrays
One-dimensional NumPy arrays can be accessed more or less like regular python arrays:
a = np.array([1, 5, 3, 19, 13, 7, 3])
a[3]
Output
19
a[2:5]
Output
array([ 3, 19, 13])
a[2:-1]
Output
array([ 3, 19, 13, 7])
a[:2]
Output
array([1, 5])
a[2::2]
Output
array([ 3, 13, 3])
a[::-1]
Output
array([ 3, 7, 13, 19, 3, 5, 1])
Of course, you can modify elements:
a[3]=999
a
Output
array([ 1, 5, 3, 999, 13, 7, 3])
You can also modify an ndarray
slice:
a[2:5] = [997, 998, 999]
a
Output
array([ 1, 5, 997, 998, 999, 7, 3])
Differences with regular python arrays
Contrary to regular python arrays, if you assign a single value to an ndarray
slice, it is copied across the whole slice, thanks to broadcasting rules discussed above.
a[2:5] = -1
a
Output
array([ 1, 5, -1, -1, -1, 7, 3])
Also, you cannot grow or shrink ndarrays
this way:
try:
a[2:5] = [1,2,3,4,5,6] # too long
except ValueError as e:
print(e)
Output
cannot copy sequence with size 6 to array axis with dimension 3
You cannot delete elements either:
try:
del a[2:5]
except ValueError as e:
print(e)
Output
cannot delete array elements
Last but not least, ndarray
slices are actually views on the same data buffer. This means that if you create a slice and modify it, you are actually going to modify the original ndarray
as well!
a_slice = a[2:6]
a_slice[1] = 1000
a # the original array was modified!
Output
array([ 1, 5, -1, 1000, -1, 7, 3])
a[3] = 2000
a_slice # similarly, modifying the original array modifies the slice!
Output
array([ -1, 2000, -1, 7])
If you want a copy of the data, you need to use the copy
method:
another_slice = a[2:6].copy()
another_slice[1] = 3000
a # the original array is untouched
Output
array([ 1, 5, -1, 2000, -1, 7, 3])
a[3] = 4000
another_slice # similary, modifying the original array does not affect the slice copy
Output
array([ -1, 3000, -1, 7])
Multi-dimensional arrays
Multi-dimensional arrays can be accessed in a similar way by providing an index or slice for each axis, separated by commas:
b = np.arange(48).reshape(4, 12)
b
Output
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]])
b[1, 2] # row 1, col 2
Output
14
b[1, :] # row 1, all columns
Output
array([12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
b[:, 1] # all rows, column 1
Output
array([ 1, 13, 25, 37])
Caution
note the subtle difference between these two expressions:
b[1, :]
Output
array([12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
b[1:2, :]
Output
array([[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
The first expression returns row 1 as a 1D array of shape (12,)
, while the second returns that same row as a 2D array of shape (1, 12)
.
Fancy indexing
You may also specify a list of indices that you are interested in. This is referred to as fancy indexing.
b[(0,2), 2:5] # rows 0 and 2, columns 2 to 4 (5-1)
Output
array([[ 2, 3, 4], [26, 27, 28]])
b[:, (-1, 2, -1)] # all rows, columns -1 (last), 2 and -1 (again, and in this order)
Output
array([[11, 2, 11], [23, 14, 23], [35, 26, 35], [47, 38, 47]])
If you provide multiple index arrays, you get a 1D ndarray
containing the values of the elements at the specified coordinates.
b[(-1, 2, -1, 2), (5, 9, 1, 9)] # returns a 1D array with b[-1, 5], b[2, 9], b[-1, 1] and b[2, 9] (again)
Output
array([41, 33, 37, 33])
Higher dimensions
Everything works just as well with higher dimensional arrays, but it's useful to look at a few examples:
c = b.reshape(4,2,6)
c
Output
array([[[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11]],
[[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]],
[[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]],
[[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]]])
c[2, 1, 4] # matrix 2, row 1, col 4
Output
34
c[2, :, 3] # matrix 2, all rows, col 3
Output
array([27, 33])
If you omit coordinates for some axes, then all elements in these axes are returned:
c[2, 1] # Return matrix 2, row 1, all columns. This is equivalent to c[2, 1, :]
Output
array([30, 31, 32, 33, 34, 35])
Ellipsis (...)
You may also write an ellipsis (...
) to ask that all non-specified axes be entirely included.
c[2, ...] # matrix 2, all rows, all columns. This is equivalent to c[2, :, :]
Output
array([[24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]])
c[2, 1, ...] # matrix 2, row 1, all columns. This is equivalent to c[2, 1, :]
Output
array([30, 31, 32, 33, 34, 35])
c[2, ..., 3] # matrix 2, all rows, column 3. This is equivalent to c[2, :, 3]
Output
array([27, 33])
c[..., 3] # all matrices, all rows, column 3. This is equivalent to c[:, :, 3]
Output
array([[ 3, 9], [15, 21], [27, 33], [39, 45]])
Boolean indexing
You can also provide an ndarray
of boolean values on one axis to specify the indices that you want to access.
b = np.arange(48).reshape(4, 12)
b
Output
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]])
rows_on = np.array([True, False, True, False])
b[rows_on, :] # Rows 0 and 2, all columns. Equivalent to b[(0, 2), :]
Output
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]])
cols_on = np.array([False, True, False] * 4)
b[:, cols_on] # All rows, columns 1, 4, 7 and 10
Output
array([[ 1, 4, 7, 10], [13, 16, 19, 22], [25, 28, 31, 34], [37, 40, 43, 46]])
np.ix_
You cannot use boolean indexing this way on multiple axes, but you can work around this by using the ix_
function:
b[np.ix_(rows_on, cols_on)]
Output
array([[ 1, 4, 7, 10], [25, 28, 31, 34]])
np.ix_(rows_on, cols_on)
Output
(array([[0], [2]]), array([[ 1, 4, 7, 10]]))
If you use a boolean array that has the same shape as the ndarray
, then you get in return a 1D array containing all the values that have True
at their coordinate. This is generally used along with conditional operators:
b[b % 3 == 1]
Output
array([ 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46])
Iterating
Iterating over ndarrays
is very similar to iterating over regular python arrays. Note that iterating over multidimensional arrays is done with respect to the first axis.
c = np.arange(24).reshape(2, 3, 4) # A 3D array (composed of two 3x4 matrices)
c
Output
array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
for m in c:
print("Item:")
print(m)
Output
Item: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] Item: [[12 13 14 15] [16 17 18 19] [20 21 22 23]]
for i in range(len(c)): # Note that len(c) == c.shape[0]
print("Item:")
print(c[i])
Output
Item: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] Item: [[12 13 14 15] [16 17 18 19] [20 21 22 23]]
If you want to iterate on all elements in the ndarray
, simply iterate over the flat
attribute:
for i in c.flat:
print("Item:", i)
Output
Item: 0 Item: 1 Item: 2 Item: 3 Item: 4 Item: 5 Item: 6 Item: 7 Item: 8 Item: 9 Item: 10 Item: 11 Item: 12 Item: 13 Item: 14 Item: 15 Item: 16 Item: 17 Item: 18 Item: 19 Item: 20 Item: 21 Item: 22 Item: 23
Stacking arrays
It is often useful to stack together different arrays. NumPy offers several functions to do just that. Let's start by creating a few arrays.
q1 = np.full((3,4), 1.0)
q1
Output
array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]])
q2 = np.full((4,4), 2.0)
q2
Output
array([[ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.]])
q3 = np.full((3,4), 3.0)
q3
Output
array([[ 3., 3., 3., 3.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.]])
vstack
Now let's stack them vertically using vstack
:
q4 = np.vstack((q1, q2, q3))
q4
Output
array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.]])
q4.shape
Output
(10, 4)
This was possible because q1, q2 and q3 all have the same shape (except for the vertical axis, but that's ok since we are stacking on that axis).
hstack
We can also stack arrays horizontally using hstack
:
q5 = np.hstack((q1, q3))
q5
Output
array([[ 1., 1., 1., 1., 3., 3., 3., 3.], [ 1., 1., 1., 1., 3., 3., 3., 3.], [ 1., 1., 1., 1., 3., 3., 3., 3.]])
q5.shape
Output
(3, 8)
This is possible because q1 and q3 both have 3 rows. But since q2 has 4 rows, it cannot be stacked horizontally with q1 and q3:
try:
q5 = np.hstack((q1, q2, q3))
except ValueError as e:
print(e)
Output
all the input array dimensions except for the concatenation axis must match exactly
concatenate
The concatenate
function stacks arrays along any given existing axis.
q7 = np.concatenate((q1, q2, q3), axis=0) # Equivalent to vstack
q7
Output
array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 2., 2., 2., 2.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.]])
q7.shape
Output
(10, 4)
As you might guess, hstack
is equivalent to calling concatenate
with axis=1
.
stack
The stack
function stacks arrays along a new axis. All arrays have to have the same shape.
q8 = np.stack((q1, q3))
q8
Output
array([[[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]],
[[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.]]])
q8.shape
Output
(2, 3, 4)
Splitting arrays
Splitting is the opposite of stacking. For example, let's use the vsplit
function to split a matrix vertically.
First let's create a 6x4 matrix:
r = np.arange(24).reshape(6,4)
r
Output
array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]])
Now let's split it in three equal parts, vertically:
r1, r2, r3 = np.vsplit(r, 3)
r1
Output
array([[0, 1, 2, 3], [4, 5, 6, 7]])
r2
Output
array([[ 8, 9, 10, 11], [12, 13, 14, 15]])
r3
Output
array([[16, 17, 18, 19], [20, 21, 22, 23]])
There is also a split
function which splits an array along any given axis. Calling vsplit
is equivalent to calling split
with axis=0
. There is also an hsplit
function, equivalent to calling split
with axis=1
:
r4, r5 = np.hsplit(r, 2)
r4
Output
array([[ 0, 1], [ 4, 5], [ 8, 9], [12, 13], [16, 17], [20, 21]])
r5
Output
array([[ 2, 3], [ 6, 7], [10, 11], [14, 15], [18, 19], [22, 23]])
Transposing arrays
The transpose
method creates a new view on an ndarray
's data, with axes permuted in the given order.
For example, let's create a 3D array:
t = np.arange(24).reshape(4,2,3)
t
Output
array([[[ 0, 1, 2], [ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23]]])
Now let's create an ndarray
such that the axes 0, 1, 2
(depth, height, width) are re-ordered to 1, 2, 0
(depth→width, height→depth, width→height):
t1 = t.transpose((1,2,0))
t1
Output
array([[[ 0, 6, 12, 18], [ 1, 7, 13, 19], [ 2, 8, 14, 20]],
[[ 3, 9, 15, 21],
[ 4, 10, 16, 22],
[ 5, 11, 17, 23]]])
t1.shape
Output
(2, 3, 4)
By default, transpose
reverses the order of the dimensions:
t2 = t.transpose() # equivalent to t.transpose((2, 1, 0))
t2
Output
array([[[ 0, 6, 12, 18], [ 3, 9, 15, 21]],
[[ 1, 7, 13, 19],
[ 4, 10, 16, 22]],
[[ 2, 8, 14, 20],
[ 5, 11, 17, 23]]])
t2.shape
Output
(3, 2, 4)
NumPy provides a convenience function swapaxes
to swap two axes. For example, let's create a new view of t
with depth and height swapped:
t3 = t.swapaxes(0,1) # equivalent to t.transpose((1, 0, 2))
t3
Output
array([[[ 0, 1, 2], [ 6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[ 3, 4, 5],
[ 9, 10, 11],
[15, 16, 17],
[21, 22, 23]]])
t3.shape
Output
(2, 4, 3)
Linear algebra
NumPy 2D arrays can be used to represent matrices efficiently in python. We will just quickly go through some of the main matrix operations available. For more details about Linear Algebra, vectors and matrics, go through the Linear Algebra tutorial.
Matrix transpose
The T
attribute is equivalent to calling transpose()
when the rank is ≥2:
m1 = np.arange(10).reshape(2,5)
m1
Output
array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
m1.T
Output
array([[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]])
The T
attribute has no effect on rank 0 (empty) or rank 1 arrays:
m2 = np.arange(5)
m2
Output
array([0, 1, 2, 3, 4])
m2.T
Output
array([0, 1, 2, 3, 4])
We can get the desired transposition by first reshaping the 1D array to a single-row matrix (2D):
m2r = m2.reshape(1,5)
m2r
Output
array([[0, 1, 2, 3, 4]])
m2r.T
Output
array([[0], [1], [2], [3], [4]])
Matrix multiplication
Let's create two matrices and execute a matrix multiplication using the dot()
method.
n1 = np.arange(10).reshape(2, 5)
n1
Output
array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
n2 = np.arange(15).reshape(5,3)
n2
Output
array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11], [12, 13, 14]])
n1.dot(n2)
Output
array([[ 90, 100, 110], [240, 275, 310]])
Caution
As mentionned previously, n1*n2
is not a matric multiplication, it is an elementwise product (also called a Hadamard product).
Matrix inverse and pseudo-inverse
Many of the linear algebra functions are available in the numpy.linalg
module, in particular the inv
function to compute a square matrix's inverse:
import numpy.linalg as linalg
m3 = np.array([[1,2,3],[5,7,11],[21,29,31]])
m3
Output
array([[ 1, 2, 3], [ 5, 7, 11], [21, 29, 31]])
linalg.inv(m3)
Output
array([[-2.31818182, 0.56818182, 0.02272727], [ 1.72727273, -0.72727273, 0.09090909], [-0.04545455, 0.29545455, -0.06818182]])
You can also compute the pseudoinverse using pinv
:
linalg.pinv(m3)
Output
array([[-2.31818182, 0.56818182, 0.02272727], [ 1.72727273, -0.72727273, 0.09090909], [-0.04545455, 0.29545455, -0.06818182]])
Identity matrix
The product of a matrix by its inverse returns the identiy matrix (with small floating point errors):
m3.dot(linalg.inv(m3))
Output
array([[ 1.00000000e+00, -1.11022302e-16, -6.93889390e-18], [ -1.33226763e-15, 1.00000000e+00, -5.55111512e-17], [ 2.88657986e-15, 0.00000000e+00, 1.00000000e+00]])
You can create an identity matrix of size NxN by calling eye
:
np.eye(3)
Output
array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])
QR decomposition
The qr
function computes the QR decomposition of a matrix:
q, r = linalg.qr(m3)
q
Output
array([[-0.04627448, 0.98786672, 0.14824986], [-0.23137241, 0.13377362, -0.96362411], [-0.97176411, -0.07889213, 0.22237479]])
r
Output
array([[-21.61018278, -29.89331494, -32.80860727], [ 0. , 0.62427688, 1.9894538 ], [ 0. , 0. , -3.26149699]])
q.dot(r) # q.r equals m3
Output
array([[ 1., 2., 3.], [ 5., 7., 11.], [ 21., 29., 31.]])
Determinant
The det
function computes the matrix determinant:
linalg.det(m3) # Computes the matrix determinant
Output
43.999999999999972
Eigenvalues and eigenvectors
The eig
function computes the eigenvalues and eigenvectors of a square matrix:
eigenvalues, eigenvectors = linalg.eig(m3)
eigenvalues # λ
Output
array([ 42.26600592, -0.35798416, -2.90802176])
eigenvectors # v
Output
array([[-0.08381182, -0.76283526, -0.18913107], [-0.3075286 , 0.64133975, -0.6853186 ], [-0.94784057, -0.08225377, 0.70325518]])
m3.dot(eigenvectors) - eigenvalues * eigenvectors # m3.v - λ*v = 0
Output
array([[ 8.88178420e-15, 2.49800181e-15, -3.33066907e-16], [ 1.77635684e-14, -1.66533454e-16, -3.55271368e-15], [ 3.55271368e-14, 3.61516372e-15, -4.44089210e-16]])
Singular Value Decomposition
The svd
function takes a matrix and returns its singular value decomposition:
m4 = np.array([[1,0,0,0,2], [0,0,3,0,0], [0,0,0,0,0], [0,2,0,0,0]])
m4
Output
array([[1, 0, 0, 0, 2], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0], [0, 2, 0, 0, 0]])
U, S_diag, V = linalg.svd(m4)
U
Output
array([[ 0., 1., 0., 0.], [ 1., 0., 0., 0.], [ 0., 0., 0., -1.], [ 0., 0., 1., 0.]])
S_diag
Output
array([ 3. , 2.23606798, 2. , 0. ])
The svd
function just returns the values in the diagonal of Σ, but we want the full Σ matrix, so let's create it:
S = np.zeros((4, 5))
S[np.diag_indices(4)] = S_diag
S # Σ
Output
array([[ 3. , 0. , 0. , 0. , 0. ], [ 0. , 2.23606798, 0. , 0. , 0. ], [ 0. , 0. , 2. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. ]])
V
Output
array([[-0. , 0. , 1. , -0. , 0. ], [ 0.4472136 , 0. , 0. , 0. , 0.89442719], [-0. , 1. , 0. , -0. , 0. ], [ 0. , 0. , 0. , 1. , 0. ], [-0.89442719, 0. , 0. , 0. , 0.4472136 ]])
U.dot(S).dot(V) # U.Σ.V == m4
Output
array([[ 1., 0., 0., 0., 2.], [ 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 2., 0., 0., 0.]])
Diagonal and trace
np.diag(m3) # the values in the diagonal of m3 (top left to bottom right)
Output
array([ 1, 7, 31])
np.trace(m3) # equivalent to np.diag(m3).sum()
Output
39
Solving a system of linear scalar equations
The solve
function solves a system of linear scalar equations, such as:
- 2x + 6y = 6
- 5x + 3y = -9
coeffs = np.array([[2, 6], [5, 3]])
depvars = np.array([6, -9])
solution = linalg.solve(coeffs, depvars)
solution
Output
array([-3., 2.])
Let's check the solution:
coeffs.dot(solution), depvars # yep, it's the same
Output
(array([ 6., -9.]), array([ 6, -9]))
Looks good! Another way to check the solution:
np.allclose(coeffs.dot(solution), depvars)
Output
True
Vectorization
Instead of executing operations on individual array items, one at a time, your code is much more efficient if you try to stick to array operations. This is called vectorization. This way, you can benefit from NumPy's many optimizations.
For example, let's say we want to generate a 768x1024 array based on the formula sin(xy/40.5). A bad option would be to do the math in python using nested loops:
import math
data = np.empty((768, 1024))
for y in range(768):
for x in range(1024):
data[y, x] = math.sin(x*y/40.5) # BAD! Very inefficient.
Sure, this works, but it's terribly inefficient since the loops are taking place in pure python. Let's vectorize this algorithm. First, we will use NumPy's meshgrid
function which generates coordinate matrices from coordinate vectors.
x_coords = np.arange(0, 1024) # [0, 1, 2, ..., 1023]
y_coords = np.arange(0, 768) # [0, 1, 2, ..., 767]
X, Y = np.meshgrid(x_coords, y_coords)
X
Output
array([[ 0, 1, 2, ..., 1021, 1022, 1023], [ 0, 1, 2, ..., 1021, 1022, 1023], [ 0, 1, 2, ..., 1021, 1022, 1023], ..., [ 0, 1, 2, ..., 1021, 1022, 1023], [ 0, 1, 2, ..., 1021, 1022, 1023], [ 0, 1, 2, ..., 1021, 1022, 1023]])
Y
Output
array([[ 0, 0, 0, ..., 0, 0, 0], [ 1, 1, 1, ..., 1, 1, 1], [ 2, 2, 2, ..., 2, 2, 2], ..., [765, 765, 765, ..., 765, 765, 765], [766, 766, 766, ..., 766, 766, 766], [767, 767, 767, ..., 767, 767, 767]])
As you can see, both X
and Y
are 768x1024 arrays, and all values in X
correspond to the horizontal coordinate, while all values in Y
correspond to the the vertical coordinate.
Now we can simply compute the result using array operations:
data = np.sin(X*Y/40.5)
Now we can plot this data using matplotlib's imshow
function
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig = plt.figure(1, figsize=(7, 6))
plt.imshow(data, cmap=cm.hot, interpolation="bicubic")
plt.show()
Saving and loading
NumPy makes it easy to save and load ndarray
s in binary or text format.
Binary .npy
format
Let's create a random array and save it.
a = np.random.rand(2,3)
a
Output
array([[ 0.41307972, 0.20933385, 0.32025581], [ 0.19853514, 0.408001 , 0.6038287 ]])
np.save("my_array", a)
Done! Since the file name contains no file extension was provided, NumPy automatically added .npy
. Let's take a peek at the file content:
with open("my_array.npy", "rb") as f:
content = f.read()
content
Output
"\x93NUMPY\x01\x00F\x00{'descr': '
To load this file into a NumPy array, simply call load
:
a_loaded = np.load("my_array.npy")
a_loaded
Output
array([[ 0.41307972, 0.20933385, 0.32025581], [ 0.19853514, 0.408001 , 0.6038287 ]])
Text format
Let's try saving the array in text format:
np.savetxt("my_array.csv", a)
Now let's look at the file content:
with open("my_array.csv", "rt") as f:
print(f.read())
Output
4.130797191668116319e-01 2.093338525574361952e-01 3.202558143634371968e-01 1.985351449843368865e-01 4.080009972772735694e-01 6.038286965726977762e-01
This is a CSV file with tabs as delimiters. You can set a different delimiter:
np.savetxt("my_array.csv", a, delimiter=",")
To load this file, just use loadtxt
:
a_loaded = np.loadtxt("my_array.csv", delimiter=",")
a_loaded
Output
array([[ 0.41307972, 0.20933385, 0.32025581], [ 0.19853514, 0.408001 , 0.6038287 ]])
Zipped .npz
format
It is also possible to save multiple arrays in one zipped file:
b = np.arange(24, dtype=np.uint8).reshape(2, 3, 4)
b
Output
array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]], dtype=uint8)
np.savez("my_arrays", my_a=a, my_b=b)
Again, let's take a peek at the file content. Note that the .npz
file extension was automatically added.
with open("my_arrays.npz", "rb") as f:
content = f.read()
repr(content)[:180] + "[...]"
Output
u'"PK\x03\x04\x14\x00\x00\x00\x00\x00x\x94cH\xb6\x96\xe4{h\x00\x00\x00h\x00\x00\x00\x08\x00\x00\x00my_b.npy\x93NUMPY\x01\x00F\x00{\'descr\': \'|u1\', \'fortran_order\': False, \'shape\': (2,[...]'
You then load this file like so:
my_arrays = np.load("my_arrays.npz")
my_arrays
Output
This is a dict-like object which loads the arrays lazily:
my_arrays.keys()
Output
['my_b', 'my_a']
my_arrays["my_a"]
Output
array([[ 0.41307972, 0.20933385, 0.32025581], [ 0.19853514, 0.408001 , 0.6038287 ]])
What next?
Now you know all the fundamentals of NumPy, but there are many more options available. The best way to learn more is to experiment with NumPy, and go through the excellent reference documentation to find more functions and features you may be interested in.